

ENSENSIA

Datasheet

The Smart Way to Monitor Air

emAirGing
Engineering & Consulting

Description

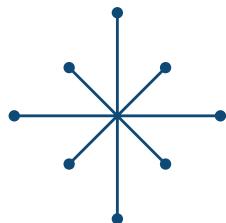
ENSENSIA is a comprehensive air quality monitoring solution designed for professional applications in both indoor and outdoor environments. It integrates advanced IoT sensors, data analytics algorithms, and a cloud-based platform to deliver precise and continuous measurements of key air quality pollutants and parameters.

Two models are available: **ENSENSIA**, a full version equipped with 12 sensors for extensive pollution detection, and **ENSENSIA Mini**, a version optimized for indoor spaces with 5 key pollutant sensors. Both models support real-time monitoring, alerts, reporting and data visualization through the ENSENSIA Cloud Platform.

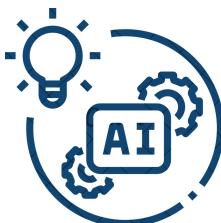
Applications

- Indoor air quality monitoring in offices, schools & healthcare facilities
- Outdoor air pollution monitoring & Smart City networks
- Industrial site and workplace exposure assessment
- Research studies & field campaigns on air quality & pollutants

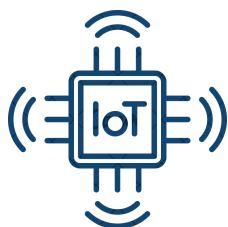
Key Features



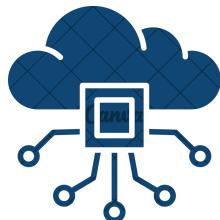
Designed for flexibility and precision, ENSENSIA integrates cutting-edge sensors, AI-driven calibration and IoT connectivity to deliver reliable and scalable air quality monitoring in any environment.


Multi-pollutant sensing

Measures key air quality pollutants and parameters, customizable per device and application.


Low cost & high scalability

Ideal for deployment across multiple space or buildings with minimal infrastructure.


Machine Learning Calibration

Continuously corrects sensor biases to improve measurement accuracy over time.

Plug-and-play IoT integration

Easily connects via Wi-Fi, 4G, or Ethernet for seamless cloud data transmission.

Edge-computing & Intelligence

Allows dynamic calibration, remote management and updates

Accurate data. Continuous insight. Confident decisions

Sensor Configuration Comparison

Both ENSENSIA models share the same advanced features; the main difference is the number and type of sensors included, according to their intended application.

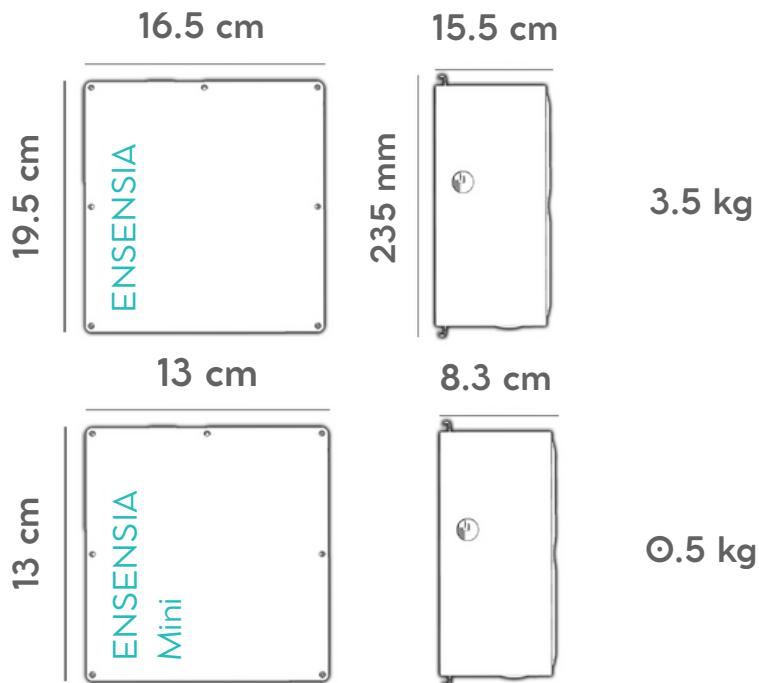
Sensor Name	SENSIA	SENSIA Mini
CO	✓	
NO	✓	
NO ₂	✓	✓
O ₃	✓	✓
CO ₂	✓	✓
tVOC	✓	✓
HCHO	✓	
PM _{2.5}	✓	✓
Temperature	✓	✓
Humidity	✓	✓

Sensor selection can be adapted for specific customer requirements. All sensors are factory-calibrated and managed through the ENSENSIA Cloud Platform.

General Information

Features

Indoor & Outdoor Use


Material: ASA EVO plastic with UV protection

Power button with LED indicator

GPS (optional)

CE mark

Dimensions & Weight

Power

Supply: 220-240V AC 50 Hz

Consumption: 4.3 W

Battery

2 x Li-Ion 5000mAh

Connectivity

2.4 GHz and 5.0 GHz IEEE 802.11ax wireless

Cellular 4G/LTE (optional)

LoRaWAN (optional)

Communication

MQTT

SSH with 2FA

Web-based platform

Sensors

CO

Sensor Technology: Electrochemical
Units: ppb / Range 0 to 10,000 ppb
Lifespan: >36 Months

NO

Sensor Technology: Electrochemical
Units: ppb / Range 0 to 400 ppb
Lifespan: >36 Months

NO₂

Sensor Technology: Electrochemical
Units: ppb / Range 0 to 400 ppb
Lifespan: >36 Months

O₃

Sensor Technology: Electrochemical
Units: ppb / Range 0 to 200 ppb
Lifespan: >36 Months

SO₂

Sensor Technology: Electrochemical
Units: ppb / Range 0 to 20 ppb
Lifespan: >36 Months

CO₂

Sensor Technology: NDIR
Units: ppm / Range 400 to 10,000 ppb
Lifespan: >15 years

tVOC

Sensor Technology: Electrochemical
Units: ppb / Range 0 to 15,000 ppb
Lifespan: >36 months

HCHO

Sensor Technology: Electrochemical
Units: ppb / Range 0 to 5 ppm
Lifespan: >36 months

Sensors

PM_{2.5}

Sensor Technology: Optical
Units: $\mu\text{g m}^{-3}$ / Range 0 to 500 $\mu\text{g m}^{-3}$
Lifespan: >5 years

Temperature

Units: °C / Range: -40 to 85 °C
Lifespan: >15 years

Humidity

Units: % / Range: 0 to 100%
Lifespan: >15 years

Operation Guide & Precautions

Do not blow air from the bottom of the device, where the sensors are placed.

Exposure to direct air flow will affect the precision of the readings.

The device operates in environments where the temperature ranges between 0 and 40 °C.

Warm-up period is 3 hours. The NO and tVOC sensors may require more than 8 hours to provide stable responses.

VOC species estimations are applicable for indoor purposes and work best in well-ventilated rooms.

After installing, power-on the device by pressing the power button on the left. The device responds with a reading after 7 minutes tops.

Data

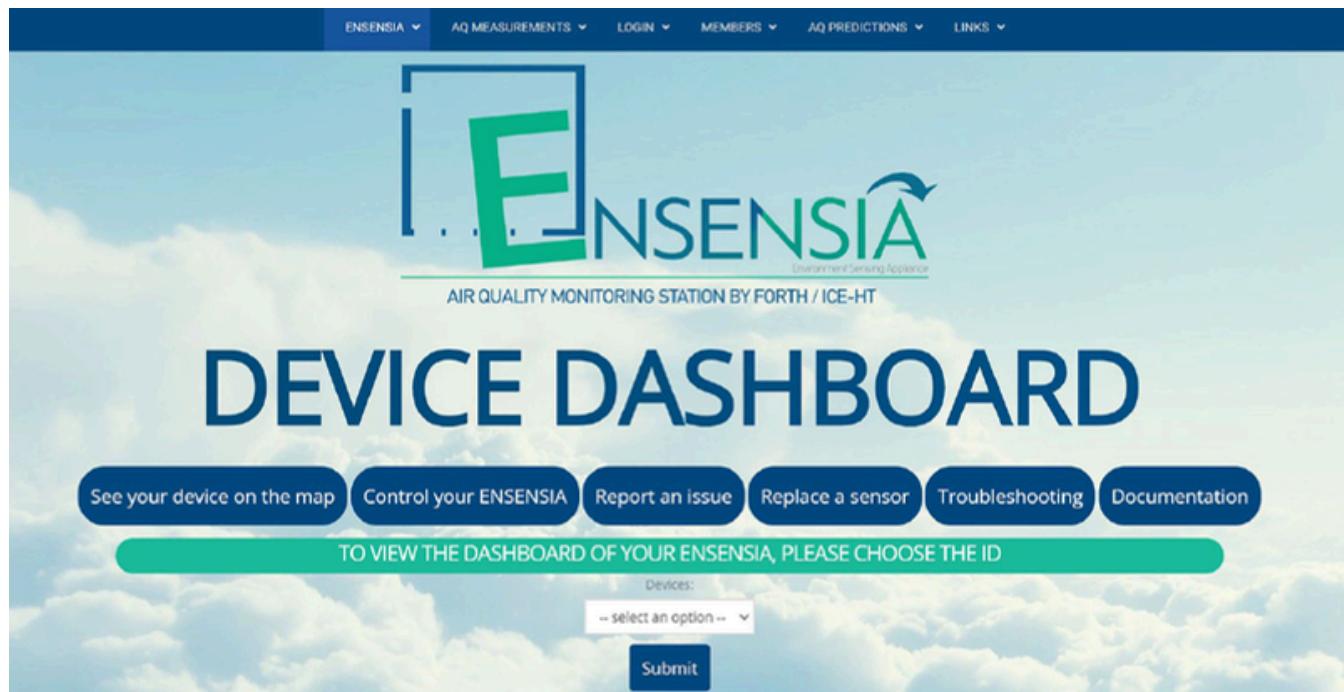
All readings are stored in the SD card of the device. There is enough capacity for at least 5 years of persistent operation.

The user can download the readings through an API or a web-based platform at <http://aqmmon.iceht.forth.gr>

Calibration

The sensors are factory calibrated and their readings are corrected every 10 minutes to ensure reliability using Machine Learning methods. Regulatory instrumentations and frequent co-locations take place to persistently update the algorithms. The user can calibrate the sensors applying a linear formula to compensate for sensor drift and ageing.

Cloud Dashboard



Visualization: Access live and historical air quality data on your dashboard.

Data download: Export environmental reports via the web interface or REST API. Custom reporting options are also available for specific use cases.

Device management: Configure alerts, adjust measurement parameters, and perform electrochemical sensor adjustments.

Machine Learning algorithms are continuously applied to the sensor data to correct biases and deviations, ensuring persistent calibration and improving measurement precision.

Investing in health pays back

Clean Air
Healthy Future

EmAIRging P.C.
Email: info@emairging.eu
Tel: +30 2610 965 344

For more information visit
Web: emairging.eu

